ON PERTURBATION THEORY **FOR SPECTRAL OPERATORS**

BY

L. TZAFRIRI

ABSTRACT

Conditions are given under which a Rellich's perturbation theorem **for** normal operators on Hilbert spaces may be generalized for spectral operators on Banach spaces.

In a previous paper, [6] Theorem 8, we proved that the strong limit of a sequence of spectral operators commuting with a Boolean algebra of projections of finite multiplicity is a spectral operator provided that their resolution of the identity are uniformly bounded. In connection with this theorem, Foguel has raised the question whether a theorem similar to Rellich's theorem [5] p. 678 (see also [2] Theorem $X-7-2$) is true in the above mentioned case.

In this note we consider a sequence of spectral operators of scalar type $\{S\}$, converging strongly to a scalar operator S, and we give a necessary and sufficient condition for the sequence $\{f(S_n)\}\)$ to converge strongly to $f(S)$ for every bounded Borel function f for which the resolution of the identity of S vanishes on a closed set containing the discontinuities of f . The required perturbation theorem for spectral operators commuting with a Boolean algebra of projections of finite multiplicity will be an immediate consequence of the precedent theorem.

Foguel has introduced in [3] p. 59 the notions of real and imaginary parts of a scalar operator. In fact, he has proved that every scalar operator S whose resolution of the identity is $E(\cdot)$ has a unique decomposition

$$
S=R+iJ
$$

where $R = \Re$ e $S = \int (\Re \lambda) E(d\lambda)$ is called the real part of S and $J = \Im$ m S = \int (\Im m λ) $E(d\lambda)$ the imaginary part (R and J have real spectrum). Using these concepts and some ideas from the proof of Rellich's theorem for normal operators we get the next basic result.

THEOREM. Let $\{S_n\}$ be a sequence of scalar operators on a Banach space X con*verging strongly to a scalar operator S and such that their resolutions of the identity are uniformly bounded i.e.* $\|E(S_n, \cdot)\| \leq M$; $n = 1, 2, \ldots$ *Then the sequence*

Received June **23, 1966.**

 ${f(S_n)x_0}$ converges to $f(S)x$ for every bounded Borel function f and $x_0 \in X$ satis*fying E(S,* δ *)x₀ = 0 (where* δ *denotes the closure of the set of all discontinuities of f*) if and only if ${R_n}$, $R_n = \Re e S_n$, converges strongly to $R = \Re e S$.

Proof. The necessity is obvious since \Re e λ is a continuous function. In order to prove the sufficiency, first, let us observe that from our hypotheses it follows

$$
\lim_{n\to\infty} (R_n - iJ_n)x = \lim_{n\to\infty} \int \bar{\lambda} E(S_n, d\lambda)x = \int \bar{\lambda} E(S, d\lambda)x; \ x \in X
$$

and further

$$
\lim_{n\to\infty}\int p(\lambda,\bar{\lambda})E(S_n,d\lambda)x = \int p(\lambda,\bar{\lambda})E(S,d\lambda)x; x \in X
$$

for every polynomial $p(\lambda, \overline{\lambda})$. Now, let Λ be compact set containing the spectra of S and S_n ; $n = 1, 2, \cdots$ and g a function continuous on Λ . In view of the Stone-Weierstrass theorem there exists a sequence of polynomials $\{p_k(\lambda,\bar{\lambda})\}$ which converges uniformly on Λ to $g(\lambda)$. Thus,

$$
\|\int [g(\lambda) - p_k(\lambda, \lambda)] E(S_n, d\lambda)\| \le 4M \sup_{\lambda \in \Lambda} |g(\lambda) - p_k(\lambda, \lambda)|; k, n = 1, 2, \dots
$$

$$
\|\int [g(\lambda) - p_k(\lambda, \lambda)] E(S, d\lambda)\| \le 4M_1 \sup_{\lambda \in \Lambda} |g(\lambda) - p_k(\lambda, \lambda)|; k = 1, 2, \dots
$$

where M_1 is a bound for the resolution of the identity of S. Further, it follows

$$
\|\int g(\lambda) E(S_n, d\lambda) x - \int g(\lambda) E(S, d\lambda) x\| \le
$$

\n
$$
\leq \|\int [g(\lambda) - p_k(\lambda, \lambda)] E(S_n, d\lambda) \| \cdot \|x\| + \|\int [g(\lambda) - p_k(\lambda, \lambda)] E(S, d\lambda) \| \cdot \|x\| +
$$

\n
$$
+ \|\int p_k(\lambda, \lambda) E(S_n, d\lambda) x - \int p_k(\lambda, \lambda) E(S, d\lambda) x\| \to 0; \ x \in X
$$

for every function g continuous on Λ .

Now, let f be a bounded Borel function on A, δ the closure of the set of all its discontinuities and $x_0 \in X$ such that $E(S, \delta)x_0 = 0$. By Urysohn's lemma [2] 1-5-2 there exists, for each $m \ge 1$, a continuous function u_m with $0 \le u_m(\lambda) \le 1$; $u_m(\lambda) = 0$ for $\lambda \in \delta$ and $u_m(\lambda) = 1$ when $\min_{u \in \rho} |\lambda - \mu| \geq 1/m$. One can easily see that

$$
\lim_{m\to\infty}\int u_m(\lambda) E(S,d\lambda)x_0=x_0
$$

Since $f u_m$ is a continuous function it follows from the first part of the proof that

64 L. TZAFRIRI [Match

$$
\lim_{n\to\infty}\int f(\lambda)u_m(\lambda) E(S_n, d\lambda)x = \int f(\lambda)u_m(\lambda) E(S, d\lambda)x; \ x \in X; \ m = 1, 2, \cdots
$$

and in view of the uniform boundedness of $||E(S_n, \cdot)||; n = 1, 2, \cdots$ we have

$$
\lim_{n\to\infty}\int f(\lambda) E(S_n, d\lambda) x_0 = \int f(\lambda) E(S, d\lambda) x_0
$$
 Q.E.D.

The present theorem generalizes a theorem of Kaplansky [4] for self-adjoint operators and a theorem of Bade [1] concerning scalar operators with real spectrum.

COROLLARY]. *Under the hypotheses of the above theorem, if for some Borel set* σ *and* $x_0 \in X$ $E(S,$ *boundary* $\sigma)x_0 = 0$, *then*

$$
\lim_{n\to\infty} E(S_n, \sigma)x_0 = E(S, \sigma)x_0
$$

From these results and [6] Theorem 8 is derived

COROLLARY 2. Let ${A_n}$ be a sequence of spectral operators on a Banach *space X commuting with a Boolean algebra of projections of uniform finite multiplicity which converges strongly to an operator A. If there is a constant K* such that $\Vert E(A_n,\delta)\Vert \leq K$; $n=1,2,\dots,\delta$ \in Borel sets, then *A* is spectral and

$$
\lim_{n\to\infty} E(A_n,\sigma)x_0 = E(A,\sigma)x_0
$$

for every Borel set σ *and* $x_0 \in X$ *satisfying E(A, boundary* σ *)* $x_0 = 0$.

If the underlying space X is a separable Hilbert space, then using [7] Theorem 13 instead of [6] Theorem 8 we can generalize Corollary 2 for spectral operators commuting with a Boolean algebra of projections containing no projections of infinite uniform multiplicity.

REFERENCES

1. W. G. Bade, *Weak andstrong limits of spectral operators,* Pacific J. Math. 4 (1954), 393-413.

2. N. Dunford and J. Schwartz, *Linear Operators*, I, II, New York Interscience Publishers, 1958, 1963.

3. S. R. Foguel, *The relations between a spectral operator and its scalar part.* Pacific J. Math. 8 (1958), 51-65.

4. I. Kaplansky, A *theorem on rings of operators,* Pacific J. Math. 1 (1951), 227-232.

5. F. Rellich, *Störungstheorie der Spektralzerlegung* II, Math. Ann. 113 (1936), 667–685.

6. L. Tzafriri, *Operators commuting with Boolean algebras of projections of finite multiplicity*, to appear in Pacific J. Math.

7. ~., Operators commuting with Boolean algebras of projections of infinite multiplicity, sent for publication.

THE HEBREW UNIVERSITY OF JERUSALEM